Author name: admin_asp

autonomous vehicles

How Annotation Support Helped to Improve a Self-Driving Car Model?

Introduction Self-driving vehicles are designs that combine the forces, such as AI models, which are trained to understand the world in the same way that a human does, i.e. recognising roads, cars, pedestrians, traffic signs, etc. in real time. Highly labelled data sets are the main determinant in creating models that can be accurate. Here know how a poorly performing autonomous driving system turned into a safety, more reliable system through professional annotation services of Annotation Support. 1. The Challenge An autonomous vehicle company faced: What ails the fundamental dilemma? Improper and dissimilar data labelling of a previous outsourced company. 2. Project Goals Annotation Support allocated the following techniques: 3. Annotation Techniques Used by Annotation Support Bounding Boxes & Polygons – cars, trucks, buses, pedestrians and cyclists Semantic Segmentation – Pixel Level label of roads, sidewalks, curbs, lanes lines LiDAR 3D Point Cloud Annotation depth / distance – LiDAR labelling Keypoint Annotation – Wheel locations, headlight locations, locations of joints of pedestrians to make predictions of moving direction Occlusion & Truncation Labels -Marking the truncated or occluded objects of the detection training 4. Quality Control Measures 5. Results One quarter-year later, having been re-annotated, and the data set scaled up: 6. Learning Key Points Conclusion Annotation Support does not only deliver labeled data–clean, consistent, context-aware annotations were directly contributed to better results in the AI judgment. In autonomous driving, the quality of the data obtained about perception may mean the difference between a near miss and accidents. With high-quality annotations, the self-driving car model became safer, faster, and more reliable—bringing it one step closer to real-world deployment.

autonomous vehicles, bounding box annotations, polygon annotation

Top Annotation Techniques Used in Autonomous Vehicle Datasets

Autonomous vehicles rely heavily on high-quality annotated data to interpret the world around them. From understanding traffic signs to detecting pedestrians, the success of these vehicles hinges on the precision of data labelling. To train these systems effectively, several annotation techniques are used to handle the wide range of data types collected from cameras, LiDAR, radar, and other sensors. Below are the top annotation techniques commonly used in autonomous vehicle datasets: 1. 2D Bounding Boxes Purpose: To find out and place objects (like vehicles, pedestrians, road signs) in 2D square video. How it Works: In the camera images, box shaped figures encircle objects of interest in the form of rectangles. A label is placed on each box (e.g. car, bicycle, stop sign). Use Cases: 2. 3D Bounding boxes Purpose: To sense the space and the position of the objects in the 3D space. How it Works: In 3D point cloud dataset (typically LiDAR) cuboids are labelled to indicate a 3D object (depth, height, width, and rotation). Use Cases: 3. Semantic Segmentation Purpose: To label each pixel (2D) or point (3D) in a point cloud or image, to a class. How it Works: The pixels of an image are classified based on the object which they are attached to (e.g. road, sidewalk, walking person). Use Cases: 4. Instance Segmentation Purpose: To recognize individual objects and boundaries, even when it comes to objects belonging to the same class. How it Works: Intertwines object detection with a semantic segmentation model to mark every object instance in different manners. Use Cases: 5. Keypoint Annotation Purpose: Indicate certain important locations on items (e.g. at joints of people, corners of traffic signs). How it Works: Keypoints where used are tagged at the important parts of the body such as elbows, knees, wheels of a vehicle or head lamps among others. Use Cases: 6. Lane Annotation Purpose: To precisely identify and mark lanes and lane divisions during the process of driving. How it Works: In detected lanes in images, curves or lines are drawn on top of these lanes. Commonly lines are drawn on top of these lanes via polynomial fitting of curved roads. Use Cases: 7. Cuboid Annotation for Sensor Fusion Purpose: To combine 2D and 3D annotations to improve accuracy through several sensors (camera + LiDAR). How it Works: LiDAR 3D annotations are projected to obtain refinements on 2D camera images with multiple sensor inputs. Use Cases: 8. Polygon Annotation Purpose: To label the objects that have odd shapes and sharp edges. How it Works: The polygons will be a draw around the contours of the objects instead of the bounding boxes, a rectangle. Use Cases: 9. Trajectory Annotation Purpose: To trace the motion-trajectories of dynamic objects between frames. How it Works: The positions of objects are tagged throughout the period to comprehend the velocity, direction and motion in future. Use Cases: Conclusion Proper labelling is the mainframe of the development of autonomous vehicles. All the methods of annotations have their own use, either it is to identify a pedestrian in a crosswalk, or a drivable route in front. With the world moving towards completely autonomous industries, these methods of annotations keep getting more accurate, quicker and scalable with AI-aided tools and with the assistance of human-in-the-loop frameworks. It is not only the training of a car but actually the training of a machine to comprehend the complications of the real world in driving.

3d LiDAR annotations

Exploring the Top 5 Challenges in Annotating 3D Point Cloud Data from LIDAR: Solutions and Best Practices

The LIDAR ( Light Detection and Ranging ) technology has become one of the foundations of a number of advanced technologies, including autonomous driving and robotics, smart cities and forestry management. The main importance of using LIDAR is its 3D point cloud data annotation, making it possible to teach the machine learning models to understand the real world in a three-dimensional format. Nevertheless, there are peculiar difficulties related to annotating 3D point clouds. In this case we would look at the 5 most common problems and suggest an effective solution or best practice that can help deal with them. 1. High Complexity and Volume of Data Challenge: The file size of 3D point clouds could be millions of points that reflect a complex environment with detail structure. Such dense datasets are hard to work with which makes annotators slow and prone to making errors. Solutions & Best Practices: 2. Poor Standardised Protocols of Annotation Challenge: In contrast to 2D image annotation, the 3D point cloud labelling has no common standards and leads to such issues as inconsistency and reduced dataset quality. Solutions & Best Practices: 3. Difficulty in Identifying Objects in Sparse or Occluded Areas Challenge: There are areas that lack point clouds or there are obstacles that hamper object identification and assigning labels to the objects unambiguously. Solutions & Best Practices: Multi-Sensor Fusion: Combine LIDAR data with camera images or radar to get complementary information. High-tech visualization: Work with tools where varying the point density of visualization and shift of viewpoint is possible. Contextual Labelling: Text annotations need to make use of context in a scene to deduce objects which are not visible. 4. Time-Consuming and Labor-Intensive Process Challenge: Labelling of 3D point clouds requires manual annotation that is more time-consuming compared to the 2D image annotation, which makes projects costlier and time-consuming. Solutions and best practices: Semi-Automatic Annotation: Use AI-based tools to tag the data in advance and then leave it to the annotators to fix the data in a short time. Active Learning: Model-in-the-loop based methods can be used in which the model proposes annotations to be verified by a human. Effective Design of the Workflow: Apply annotation workflows and reduce repetitive procedures and operations. 5. Handling Dynamic and Moving Objects Challenge: During high level uses such as autonomous driving, the objects change position between the frames of LIDAR, which makes it difficult to annotate the object related to a temporal sequence and tracking. Solutions and best practices: Conclusion It is important to annotate LIDAR-derived 3D point clouds data although it is a difficult task. With the introduction of standardized protocols, the use of advanced tools and AI support, multi-sensor data overlay, organizations will be able to raise the quality and efficiency of annotations by several orders of magnitude. All these are the best practices that can lead to the maximization of the possibility of the 3D LIDAR data into different innovative uses.

annotation company, autonomous vehicles, data annotation services

Why “Annotation Support” Stands Among the Top Data Annotation Companies Globally?

“Annotation Support” has won a notable place among global data annotation providers by always delivering high-quality, flexible, and adjustable solutions. Let’s look at the reasons it separates itself from the other top companies in the industry. 1. Industry-Specific Expertise “Annotation Support” covers in-depth information in many different industries. As a result, clients can expect data that addresses their industries in particular. 2. Wide Range of Annotation Services From the basic step of rendering as 2D boxes to following the movement of 3D objects, “Annotation Support” handles many types of object detection. The wide range of services attracts clients from all kinds of AI training industries. 3. Quality-Driven Process “Annotation Support” has these features: For models to succeed, accuracy and consistency need to be found in its services. 4. Scalable Workforce and Tools No matter if it is a small startup or a big enterprise, “Annotation Support” can match the needs of any organization. As a result, different projects will benefit from flexibility and lower costs. 5. Secure and Confidential Operations Ensuring security is very important in such projects. “Annotation Support” brings the following benefits: For this reason, our services matter most to companies in healthcare, fintech, and legal tech. 6. Global Clientele and Proven Track Record “Annotation Support” has: Global reach and a strong track record reinforce its credibility. 7. Innovation and Customization It allows data to be labelled with a goal of improving AI in the future. That’s why “Annotation Support” is notable; it gathers domain expertise, looks after technological aspects, tests rigorously for quality, addresses security matters, and delivers results internationally. Because of these strengths, companies prefer to use it when developing dependable, error-free, and expandable AI systems.

Uncategorized

Exploring the Impact of Data Labeling on AI Accuracy: Lessons from Industry Leaders

Introduction The performance of AI systems, and particularly those built on ML, very much depends on the quality of the data on which they are trained. Data labelling is one of the most important steps in this process – the process of assigning tags to or annotating raw data (images, text, video, etc.) to put meaning to it for training algorithms. Industry leaders in various fields have found out that data labelled badly produce wrong models, whereas data labelled well can increase the accuracy, robustness, and real-world applications of AI many-fold. Why Data Labelling Matters? 1. Foundation of Supervised Learning Labeled data is applied in the supervised learning, to train algorithms in the making of predictions or classifications. Label errors directly reflect to model errors. 2. Influences Model Generalization Well labeled data guarantees the AI systems to generalize from training to unseen data hence increasing their applicability in the real world. 3. Impacts Trust and Explainability Label precision allows models to pick up sensible patterns; their outputs thus become more plausible and reliable – a major consideration for impactful environments such as healthcare or finance. Key Lessons from Industry Leaders 1. Google: Quality > Quantity Google prefers label consistency over volume of dataset. In such projects as Google Photos or Google Translate, the company spent much on the researching: Lesson: Volume is not enough – clean, good labelled data is what makes the difference for high performance. 2. Tesla: Iterative Labeling for Self-Driving Tesla applies an iterative labeling, particularly for autonomous vehicles. Their “shadow mode” enables the car to learn from the real-world cases and mark suspicious predictions for further check-up and labeling. Lesson: Labeling and model feedback loops, that is, continually updating a model based on its interactions with its context, is a means to facilitate adaptation in complex circumstances, enhancing long-term AI accuracy. 3. Meta (Facebook): Scalable Annotation Services with AI Assistance Meta performs semi-automated labeling so that AI models pre-label data, and human annotators finalize or change the findings. This is a huge acceleration of the efficiency of data pipelines without compromising accuracy. Lesson: Human-AI collaboration scales annotation whilst maintaining label quality. 4. Amazon: Leveraging Crowdsourcing with Quality Control Amazon’s SageMaker Ground Truth combines crowdsourcing with quality controls that are automated, including: Lesson: Crowdsourcing is useful when matched with extensive validation mechanisms. 5. IBM: Domain-Specific Expertise In areas of healthcare, finance, IBM uses domain experts for data labelling. For example, radiologists annotate medical imagery for diagnostic AI, which means the labels actually have clinical context. Lesson: Complex domains need expert labellers and not workers in general. Common Pitfalls in Data Labeling Conclusion As AI systems are inserted more into critical decision-making procedures, the measure of accuracy of these systems is paramount to the quality of labeled training data. Industry leaders have proven that if there is strategic investment in data labeling using tools, processes, and people, then the model can be significantly improved. What should organizations building AI take home? Treat data labeling as an integral part of your AI development lifecycle and not as a secondary one.

Scroll to Top